Self-assembling protein nanoparticles for cytosolic delivery of nucleic acids and proteins

kisded kisdedUncategorized1 month ago32 Views

  • Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramaswamy, S. et al. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc. Natl Acad. Sci. USA 114, E1941–E1950 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parayath, N. N., Stephan, S. B., Koehne, A. L., Nelson, P. S. & Stephan, M. T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11, 6080 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendes, B. B. et al. Nanodelivery of nucleic acids. Nat. Rev. Methods Primers 2, 24 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, Y., Tirrell, M. V. & LaBelle, J. L. Harnessing the therapeutic potential of biomacromolecules through intracellular delivery of nucleic acids, peptides, and proteins. Adv. Healthc. Mater. 11, 2102600 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Sig. Transduct. Target. Ther. 6, 53 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Z., Anselmo, A. C. & Mitragotri, S. Viral vector‐based gene therapies in the clinic. Bioeng. Transl. Med. 7, e10258 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, R., Kanjilal, P., Medeiros, J. & Thayumanavan, S. What’s next after lipid nanoparticles? A perspective on enablers of nucleic acid therapeutics. Bioconjug. Chem. 33, 1996–2007 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koren, E., Apte, A., Sawant, R. R., Grunwald, J. & Torchilin, V. P. Cell-penetrating TAT peptide in drug delivery systems: proteolytic stability requirements. Drug Deliv. 18, 377–384 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, N., Mishra, A., Lai, G. H. & Wong, G. C. L. Arginine-rich cell-penetrating peptides. FEBS Lett. 584, 1806–1813 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Derossi, D., Joliot, A. H., Chassaing, G. & Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444–10450 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishnamurthy, S. et al. Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nat. Commun. 10, 4906 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez-Navarro, M. Advances in peptide-mediated cytosolic delivery of proteins. Adv. Drug Deliv. Rev. 171, 187–198 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Boisguérin, P., Konate, K., Josse, E., Vivès, E. & Deshayes, S. Peptide-based nanoparticles for therapeutic nucleic acid delivery. Biomedicines 9, 583 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, W. & Chaikof, E. L. Recombinant elastin-mimetic biomaterials: emerging applications in medicine. Adv. Drug Deliv. Rev. 62, 1468–1478 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gagner, J. E., Kim, W. & Chaikof, E. L. Designing protein-based biomaterials for medical applications. Acta Biomater. 10, 1542–1557 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenkins, I. C., Milligan, J. J. & Chilkoti, A. Genetically encoded elastin-like polypeptides for drug delivery. Adv. Healthc. Mater. 10, 2100209 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Urry, D. W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101, 11007–11028 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Dreher, M. R. et al. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J. Am. Chem. Soc. 130, 687–694 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, N. K., García Quiroz, F., Hall, C. K., Chilkoti, A. & Yingling, Y. G. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules 15, 3522–3530 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, W., Xiao, J. & Chaikof, E. L. Recombinant amphiphilic protein micelles for drug delivery. Langmuir 27, 14329–14334 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, W., Brady, C. & Chaikof, E. L. Amphiphilic protein micelles for targeted in vivo imaging. Acta Biomater. 8, 2476–2482 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, W. et al. Targeted antithrombotic protein micelles. Angew. Chem. Int. Ed. Engl. 54, 1461–1465 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, A., Sim, D., Lee, Y.-J., Sarangthem, V. & Park, R.-W. Development of elastin-like polypeptide for targeted specific gene delivery in vivo. J. Nanobiotechnology 18, 15 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, A., Sim, D., Lee, S.-B., Sarangthem, V. & Park, R.-W. Application of bioengineered elastin-like polypeptide-based system for targeted gene delivery in tumor cells. Biomater. Biosyst. 6, 100050 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eweje, F. et al. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 305, 122464 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, W., Thévenot, J., Ibarboure, E., Lecommandoux, S. & Chaikof, E. L. Self-assembly of thermally responsive amphiphilic diblock copolypeptides into spherical micellar nanoparticles. Angew. Chem. Int. Ed. Engl. 49, 4257–4260 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorr, B. M., Ham, H. O., An, C., Chaikof, E. L. & Liu, D. R. Reprogramming the specificity of sortase enzymes. Proc. Natl Acad. Sci. USA 111, 13343–13348 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, H.-S. et al. Anti-human CD117 antibody-mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice. Blood 133, 2104–2108 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czechowicz, A. et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat. Commun. 10, 617 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freeman, E. C., Weiland, L. M. & Meng, W. S. Modeling the proton sponge hypothesis: examining proton sponge effectiveness for enhancing intracellular gene delivery through multiscale modeling. J. Biomater. Sci. Polym. Ed. 24, 398–416 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajimolaali, M. et al. Application of chloroquine as an endosomal escape enhancing agent: new frontiers for an old drug. Expert Opin. Drug Deliv. 18, 877–889 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen, E. J. B. et al. In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. J. Control. Release 189, 19–24 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Sayed, A., Masuda, T., Khalil, I., Akita, H. & Harashima, H. Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape. J. Control. Release 138, 160–167 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rai, D. K. & Qian, S. Interaction of the antimicrobial peptide aurein 1.2 and charged lipid bilayer. Sci. Rep. 7, 3719 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peterson, J. J. & Meares, C. F. Cathepsin substrates as cleavable peptide linkers in bioconjugates, selected from a fluorescence quench combinatorial library. Bioconjug. Chem. 9, 618–626 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biniossek, M. L., Nägler, D. K., Becker-Pauly, C. & Schilling, O. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J. Proteome Res. 10, 5363–5373 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abboud-Jarrous, G. et al. Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J. Biol. Chem. 283, 18167–18176 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biswas, A. et al. Endoprotease-mediated intracellular protein delivery using nanocapsules. ACS Nano 5, 1385–1394 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, J. et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application. Front. Pharmacol. 11, 697 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guterstam, P. et al. Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochim. Biophys. Acta 1788, 2509–2517 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Islam, M. Z., Ariyama, H., Alam, J. M. & Yamazaki, M. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores. Biochemistry 53, 386–396 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akishiba, M. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 9, 751–761 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, H. & Feix, J. B. Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim. Biophys. Acta 1758, 1245–1256 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho, A., Schwarze, S. R., Mermelstein, S. J., Waksman, G. & Dowdy, S. F. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res. 61, 474–477 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Kabelka, I. & Vácha, R. Advances in molecular understanding of α-helical membrane-active peptides. Acc. Chem. Res. 54, 2196–2204 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brock, D. J. et al. Mechanism of cell penetration by permeabilization of late endosomes: interplay between a multivalent TAT peptide and bis(monoacylglycero)phosphate. Cell Chem. Biol. 27, 1296–1307 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guay, D., Del’Guidice, T. & Lepetit-Stoffaes, J.-P. Polypeptide-based shuttle agents for improving the transduction efficiency of polypeptide cargos to the cytosol of target eukaryotic cells, uses thereof, methods and kits relating to same. US patent US9738687B2 (2016).

  • Wang, G., Li, X. & Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pirtskhalava, M. et al. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res. 49, D288–D297 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai, C.-Y. et al. Helical structure motifs made searchable for functional peptide design. Nat. Commun. 13, 102 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machida, S., Niimi, S., Shi, X., Ando, Y. & Yu, Y. Design of a novel membrane-destabilizing peptide selectively acting on acidic liposomes. Biosci. Biotechnol. Biochem. 64, 985–994 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slaninová, J. et al. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides 33, 18–26 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Oh, J. H. et al. Multimeric amphipathic α-helical sequences for rapid and efficient intracellular protein transport at nanomolar concentrations. Adv. Sci. 5, 1800240 (2018).

    Article 

    Google Scholar
     

  • Chong, S.-E. et al. Intracellular delivery of immunoglobulin G at nanomolar concentrations with domain Z-fused multimeric α-helical cell penetrating peptides. J. Control. Release 330, 161–172 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, T. et al. Separation and characterization of late endosomal membrane domains. J. Biol. Chem. 277, 32157–32164 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S., Shen, J., Li, D. & Cheng, Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 11, 614–648 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rilo-Alvarez, H., Ledo, A. M., Vidal, A. & Garcia-Fuentes, M. Delivery of transcription factors as modulators of cell differentiation. Drug Deliv. Transl. Res. 11, 426–444 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, F. et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hołubowicz, R. et al. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat. Biomed. Eng. 9, 57–78 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR–Cas9 ribonucleoprotein. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02437-3 (2024).

  • Mónica Bravo-Anaya, L. et al. Coupling of RAFT polymerization and chemoselective post-modifications of elastin-like polypeptides for the synthesis of gene delivery hybrid vectors. Polym. Chem. 12, 226–241 (2021).

    Article 

    Google Scholar
     

  • Bravo-Anaya, L. M. et al. Nucleic acids complexation with cationic elastin-like polypeptides: stoichiometry and stability of nano-assemblies. J. Colloid Interface Sci. 557, 777–792 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, G. et al. Intratumoral delivery of brachytherapy and immunotherapy by a thermally triggered polypeptide depot. J. Control. Release 343, 267–276 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C. H., Ingrole, R. S. J. & Gill, H. S. Generation of induced pluripotent stem cells using elastin like polypeptides as a non-viral gene delivery system. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165405 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piña, M. J. et al. A double safety lock tumor-specific device for suicide gene therapy in breast cancer. Cancer Lett. 470, 43–53 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Del’Guidice, T. et al. Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR–Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells. PLoS ONE 13, e0195558 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chow, D. C., Dreher, M. R., Trabbic-Carlson, K. & Chilkoti, A. Ultra-high expression of a thermally responsive recombinant fusion protein in E. coli. Biotechnol. Prog. 22, 638–646 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tripathi, N. K. Production and purification of recombinant proteins from Escherichia coli. ChemBioEng Rev. 3, 116–133 (2016).

    Article 

    Google Scholar
     

  • Schneier, M., Razdan, S., Miller, A. M., Briceno, M. E. & Barua, S. Current technologies to endotoxin detection and removal for biopharmaceutical purification. Biotechnol. Bioeng. 117, 2588–2609 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S., Sun, Y., Zhang, L., Zhang, F. & Gao, W. Thermoresponsive polypeptide fused l-asparaginase with mitigated immunogenicity and enhanced efficacy in treating hematologic malignancies. Adv. Sci. 10, 2300469 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, T.-F. et al. Differential activation of IFN regulatory factor (IRF)-3 and IRF-5 transcription factors during viral infection. J. Immunol. 176, 7462–7470 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, L., Liu, Y. & Han, R. BEAT: a Python program to quantify base editing from Sanger sequencing. CRISPR J. 2, 223–229 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seluanov, A., Vaidya, A. & Gorbunova, V. Establishing primary adult fibroblast cultures from rodents. J. Vis. Exp. 2010, 2033 (2010).

  • Angsana, J. et al. Syndecan-1 modulates the motility and resolution responses of macrophages. Arterioscler. Thromb. Vasc. Biol. 35, 332–340 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Sci. Adv. 6, eaay8230 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, N. T. et al. Efficient CRISPR/Cas9-mediated gene knockin in mouse hematopoietic stem and progenitor cells. Cell Rep. 28, 3510–3522 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayes, H. K., Ritchie, N., Irvine, S. & Evans, T. J. A murine model of early Pseudomonas aeruginosa lung disease with transition to chronic infection. Sci. Rep. 6, 35838 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eweje, F. et al. Self-assembling protein nanoparticles for cytosolic delivery of nucleic acids and proteins. GitHub https://github.com/sayoeweje/elp-eep-discovery (2025).

  • Read More

    0 Votes: 0 Upvotes, 0 Downvotes (0 Points)

    Leave a reply

    Recent Comments

    No comments to show.

    Stay Informed With the Latest & Most Important News

    I consent to receive newsletter via email. For further information, please review our Privacy Policy

    Advertisement

    Loading Next Post...
    Follow
    Sign In/Sign Up Sidebar Search Trending 0 Cart
    Popular Now
    Loading

    Signing-in 3 seconds...

    Signing-up 3 seconds...

    Cart
    Cart updating

    ShopYour cart is currently is empty. You could visit our shop and start shopping.