Far-red chemigenetic kinase biosensors enable multiplexed and super-resolved imaging of signaling networks

IO_AdminUncategorized2 months ago62 Views

Data availability

Plasmids encoding pcDNA3.1-HaloAKAR2.0-T2A-EGFP, pcDNA3.1-HaloAKAR2.1-T2A-EGFP, pcDNA3.1-HaloAKAR2.2-T2A-EGFP, pcDNA3.1-HaloAKAR2.1-NES-T2A-EGFP-CAAX, pcDNA3.1-HaloAKAR2.1-CLC, pcDNA3.1-HaloCKAR2.2-T2A-EGFP, pcDNA3.1-HaloAktKAR2.2-T2A-EGFP and pcDNA3.1-HaloEKAR2.2-T2A-EGFP are deposited on Addgene. The stable cell line generated is available upon request. Source data are provided with this paper. Further data supporting the findings of this study are available upon request.

Code availability

Custom MATLAB scripts (R2023a 9.14.0.2254940) for clathrin-coated pit analysis, custom ImageJ macros and R code used to analyze imaging data, as well as bash and R scripts used to analyze sequencing data, are available via GitHub at https://github.com/jinzhanglab-ucsd (ref. 30). Python code (Jupyter Notebook 6.5.4 with python 3.11.5) used to analyze lattice light-sheet data is available via GitHub at https://github.com/pylattice/livelattice (ref. 73) and https://github.com/schoeneberglab/Segmentation/blob/main/3D_spheroid_cell_segmentation.ipynb (ref. 74).

References

  1. Gest, A. M. M. et al. Molecular spies in action: genetically encoded fluorescent biosensors light up cellular signals. Chem. Rev. 124, 12573–12660 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  2. Yan, R., Wang, B. & Xu, K. Functional super-resolution microscopy of the cell. Curr. Opin. Chem. Biol. 51, 92–97 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  3. Lu, K., Vu, C. Q., Matsuda, T. & Nagai, T. Fluorescent protein-based indicators for functional super-resolution imaging of biomolecular activities in living cells. Int. J. Mol. Sci. 20, 5784 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  4. Mishra, K. et al. Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nat. Biotechnol. 40, 598–605 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  5. Mo, G. C. H. et al. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat. Methods 14, 427–434 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  6. Anton, S. E. et al. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell 185, 1130–1142 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  7. Zhang, J.-F. et al. An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice. Nat. Chem. Biol. 17, 39–46 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  8. Mehta, S. et al. Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. Nat. Cell Biol. 20, 1215–1225 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  9. Shcherbakova, D. M., Cox Cammer, N., Huisman, T. M., Verkhusha, V. V. & Hodgson, L. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat. Chem. Biol. 14, 591–600 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  10. Oliinyk, O. S., Shemetov, A. A., Pletnev, S., Shcherbakova, D. M. & Verkhusha, V. V. Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing. Nat. Commun. 10, 279 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  11. Cook, A., Walterspiel, F. & Deo, C. HaloTag-based reporters for fluorescence imaging and biosensing. ChemBioChem 24, e202300022 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  12. Deo, C. et al. The HaloTag as a general scaffold for far-red tunable chemigenetic indicators. Nat. Chem. Biol. 17, 718–723 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  13. Wang, L., Hiblot, J., Popp, C., Xue, L. & Johnsson, K. Environmentally sensitive color-shifting fluorophores for bioimaging. Angew. Chem. Int. Ed. 132, 22064–22068 (2020).

    Article 

    Google Scholar
     

  14. Lee, J. D. et al. Far-red and sensitive sensor for monitoring real time H2O2 dynamics with subcellular resolution and in multi-parametric imaging applications. Preprint at bioRxiv https://doi.org/10.1101/2024.02.06.579232 (2024).

  15. Farrants, H. et al. A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging. Nat. Methods 21, 1916–1925 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  16. Depry, C., Allen, M. D. & Zhang, J. Visualization of PKA activity in plasma membrane microdomains. Mol. Biosyst. 7, 52–58 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  17. Wang, L., Hiblot, J., Popp, C., Xue, L. & Johnsson, K. Environmentally sensitive color‐shifting fluorophores for bioimaging. Angew. Chem. 132, 22064–22068 (2020).

    Article 

    Google Scholar
     

  18. Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  19. Liu, L. et al. Integration of FRET and sequencing to engineer kinase biosensors from mammalian cell libraries. Nat. Commun. 12, 5031 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  20. Koberstein, J. N., Stewart, M. L., Mighell, T. L., Smith, C. B. & Cohen, M. S. A Sort-Seq approach to the development of single fluorescent protein biosensors. ACS Chem. Biol. 16, 1709–1720 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  21. Chen, M., Sun, T., Zhong, Y., Zhou, X. & Zhang, J. A highly sensitive fluorescent Akt biosensor reveals lysosome-selective regulation of lipid second messengers and kinase activity. ACS Cent. Sci. 7, 2009–2020 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  22. Keyes, J. et al. Signaling diversity enabled by Rap1-regulated plasma membrane ERK with distinct temporal dynamics. eLife 9, e57410 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  23. Seino, S. & Shibasaki, T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol. Rev. 85, 1303–1342 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  24. Tenner, B. et al. Spatially compartmentalized phase regulation of a Ca2+-cAMP-PKA oscillatory circuit. eLife 9, e55013 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  25. Ni, Q. et al. Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit. Nat. Chem. Biol. 7, 34–40 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  26. Bock, A. et al. Optical mapping of cAMP signaling at the nanometer scale. Cell 182, 1519–1530 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  27. Tenner, B. et al. FluoSTEPs: fluorescent biosensors for monitoring compartmentalized signaling within endogenous microdomains. Sci. Adv. 7, eabe4091 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  28. Wang, L., Frei, M. S., Salim, A. & Johnsson, K. Small-molecule fluorescent probes for live-cell super-resolution microscopy. J. Am. Chem. Soc. 141, 2770–2781 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  29. Stockhammer, A. & Bottanelli, F. Appreciating the small things in life: STED microscopy in living cells. J. Phys. Appl. Phys. 54, 033001 (2020).

    Article 

    Google Scholar
     

  30. Lyons, A. C. & Frei, M. S. jinzhanglab-ucsd/HaloAKAR: ZenodoRelease. Zenodo https://doi.org/10.5281/zenodo.14962626 (2025).

  31. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 1–29 (2013).

    Article 

    Google Scholar
     

  32. Wang, L. et al. A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging. Nat. Commun. 13, 5363 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  33. Harada, K. et al. Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Sci. Rep. 7, 7351 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  34. Matsuda, S. et al. Generation of a cGMP indicator with an expanded dynamic range by optimization of amino acid linkers between a fluorescent protein and PDE5α. ACS Sens. 2, 46–51 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  35. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  36. Su, Q. et al. Sensitive fluorescent biosensor reveals differential subcellular regulation of PKC. Nat. Chem. Biol. 21, 501–511 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  37. Wachter, S. B. & Gilbert, E. M. Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology 122, 104–112 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  38. Hauser, A. S. et al. Common coupling map advances GPCR-G protein selectivity. eLife 11, e74107 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  39. Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933–1947 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  40. Avet, C. et al. Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs. eLife 11, e74101 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  41. Pizzoni, A., Zhang, X. & Altschuler, D. L. From membrane to nucleus: a three-wave hypothesis of cAMP signaling. J. Biol. Chem. 300, 105497 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  42. Stallaert, W. et al. Purinergic receptor transactivation by the β2-adrenergic receptor increases intracellular Ca2+ in nonexcitable cells. Mol. Pharmacol. 91, 533–544 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  43. Woodward, D. F., Jones, R. L. & Narumiya, S. International union of basic and clinical pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol. Rev. 63, 471–538 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  44. Abramovitz, M. et al. The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim. Biophys. Acta 1483, 285–293 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  45. Lv, X. et al. Structures of human prostaglandin F2α receptor reveal the mechanism of ligand and G protein selectivity. Nat. Commun. 14, 8136 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  46. Hébert, R. L. et al. Characterization of a rabbit kidney prostaglandin F2α receptor exhibiting Gi-restricted signaling that inhibits water absorption in the collecting duct. J. Biol. Chem. 280, 35028–35037 (2005).

    Article 
    PubMed 

    Google Scholar
     

  47. Wright, S. C. et al. GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics. Nat. Commun. 14, 6243 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  48. Müller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  49. Gilon, P., Chae, H.-Y., Rutter, G. A. & Ravier, M. A. Calcium signaling in pancreatic β-cells in health and in type 2 diabetes. Cell Calcium 56, 340–361 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  50. Brown, E., Heerspink, H. J. L., Cuthbertson, D. J. & Wilding, J. P. H. SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications. Lancet 398, 262–276 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  51. Andersen, A., Lund, A., Knop, F. K. & Vilsbøll, T. Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol. 14, 390–403 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  52. Shemetov, A. A. et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39, 368–377 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  53. Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16, 171–174 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  54. Qian, Y. et al. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging. PLoS Biol. 18, e3000965 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  55. Pfeil, E. M. et al. Heterotrimeric G protein subunit Gαq is a master switch for Gβγ-mediated calcium mobilization by Gi-coupled GPCRs. Mol. Cell 80, 940–954 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  56. Leysen, H. et al. GPCRs are optimal regulators of complex biological systems and orchestrate the interface between health and disease. Int. J. Mol. Sci. 22, 13387 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  57. Marti-Solano, M. et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 587, 650–656 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  58. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  59. Lambert, T. J. FPbase: a community-editable fluorescent protein database. Nat. Methods 16, 277–278 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  60. Miyazaki, J.-I. et al. Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127, 126–132 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  61. Reissaus, C. A. et al. A versatile, portable intravital microscopy platform for studying beta-cell biology in vivo. Sci. Rep. 9, 8449 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  62. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  63. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  64. Arganda-Carreras, I. et al. in Computer Vision Approaches to Medical Image Analysis (eds Beichel, R.R. & Sonka, M.) 85–95 (Springer, 2006).

  65. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  66. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  67. Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  68. Liu, G. et al. Characterization, comparison, and optimization of lattice light sheets. Sci. Adv. 9, eade6623 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  69. Sezgin, E. et al. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS. Nat. Protoc. 14, 1054–1083 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  70. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  71. Wickham, H. & Bryan, J. readxl: Read Excel Files. R package version 1.4.5, https://readxl.tidyverse.org (2025).

  72. Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw 4, 1686 (2019).

    Article 

    Google Scholar
     

  73. Wang, Z. & Hakozaki, H. LiveLattice: real-time visualization of tilted light-sheet microscopy data using a memory-efficient transformation algorithm. Zenodo https://doi.org/10.5281/zenodo.12738245 (2024).

  74. Wang, Z. 3D_spheroid_cell_segmentation. Zenodo https://doi.org/10.5281/zenodo.14994434 (2025).

Download references

Acknowledgements

We thank L. Lavis and J. Grimm (Janelia Research Campus) for providing JF fluorophores. We thank Irving Garcia (USC) for assistance with cell culture. We thank C. Alvarez (UCSD) for assistance with cloning. We thank J. Bogomolovas and J. Chen (UCSD) for access and assistance to their fluorescence polarization plate reader. We thank J. Chung and J. Yang (UCSD) for access and assistance to their fluorescence and absorbance spectrometer. We thank Z. Liang (UCSD) for help with processing of sequencing results. We thank H. Farrants (Janelia Research Campus) for discussions on chemigenetic biosensors. We thank A. Linnemann (Indiana University) for providing the pAAV-Ins-GCaMP plasmid map. We thank Q. Su (UCSD) for providing the ExRai-CKAR2 plasmid. We thank Y. Kwon (UCSD) for cloning β1AR. We thank N. Bergkamp (UCSD) for critical reading of the manuscript. We thank Q. Ni (UCSD) for support in material acquisition and tissue culture. We thank P. Guo from the UC San Diego Nikon Imaging Center, as well as J. Santini and M. Erb from the UC San Diego School of Medicine Microscopy Core, for assistance with microscopy. We thank the Translational Imaging Center, A. Shwartz and J. Junge, at USC for their help with STED microscopy. This publication includes data generated at the UC San Diego IGM Genomics Center utilizing an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (no. S10 OD026929). The Leica SP8 in the UC San Diego School of Medicine Microscopy Core was funded by NINDS P30NS04710. This research was further supported by the Swiss National Science Foundation (SNSF) grants P2ELP3_199834 and P500PN_214234 to M.S.F.; the Charles Lee Powell Foundation Powell Fellowship at the University of California, San Diego (UCSD) and the UCSD Interfaces Graduate Training Program National Institutes of Health (NIH)/National Institute of Biomedical Imaging and Bioengineering (NIBIB) T32 Training in Multi-scale Analysis of Biological Structures and Function Training Grant 5T32EB009380-15 to S.A.S.; an NIH-K01EB035649 grant to L.L.; an EMBO (ALTF 849-2020) and HFSP (LT000404/2021-L) fellowship to F.S.; an American Heart Association Predoctoral Fellowship (24PRE1196243) to Z.W.; the National Science Foundation (NSF) Graduate Research Fellowship (DGE-2038238) and American Heart Association Predoctoral Fellowship (24PRE1186687) to A.C.L. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF; the Swiss National Science Foundation (P2BSP3_200177) and the Larry L. Hillblom Foundation (2023-D-012-FEL) to T.V.R.; the US National Institute of Diabetes and Digestive and Kidney Diseases (P30DK063491 and R01DK101395) and a grant from Janssen Pharmaceuticals to J.M.O.; NIH R01GM149976, NIH U01AI167892, NIH 5R01NS111039, NIH R21NS125395, NIHU54DK134301, NIHU54 HL165443 and UCSD Startup funds to L.S.; NIH Grants DP2 GM150022 and R01 GM148765 to J.S.; NIH grant R01 CA262815 to J.Z. and Y.W.; NIH grants EB029122, R35 GM140929, R01 HL121365 and HD107206 to Y.W.; and NIH grants R35 CA197622, R01 DK073368, R01 DE030497, R01 HL162302 and RF1 MH126707 to J.Z.

Author information

Author notes

  1. Michelle S. Frei

    Present address: Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland

  2. These authors contributed equally: Samantha A. Sanchez, Xinchang He.

Authors and Affiliations

  1. Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA

    Michelle S. Frei, Samantha A. Sanchez, Xinchang He, Zichen Wang, Hiroyuki Hakozaki, Anne C. Lyons, Johannes Schöneberg, Sohum Mehta & Jin Zhang

  2. Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA

    Samantha A. Sanchez, Longwei Liu, Yajuan Li, Anne C. Lyons, Lingyan Shi, Yingxiao Wang & Jin Zhang

  3. Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA

    Xinchang He, Zichen Wang, Hiroyuki Hakozaki, Johannes Schöneberg & Jin Zhang

  4. Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA

    Longwei Liu & Yingxiao Wang

  5. Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA

    Longwei Liu, Scott E. Fraser & Yingxiao Wang

  6. Translational Imaging Center, University of Southern California, Los Angeles, CA, USA

    Falk Schneider & Scott E. Fraser

  7. Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA

    Falk Schneider

  8. Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA

    Theresa V. Rohm & Jerrold M. Olefsky

  9. Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA

    Scott E. Fraser

  10. Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA

    Jin Zhang

Contributions

M.S.F. and J.Z. conceived and designed the study. M.S.F. performed the rational and Sort-Seq screen; performed in cellulo and in vitro characterization of all HaloAKAR variants; and performed widefield, widefield multiplexing, spinning disc confocal, scanning confocal, FLIM and STED microscopy and analysis thereof. S.A.S. generated and characterized HaloKAR variants and generated spheroids and performed spinning disc confocal microscopy and analysis thereof. X.H. cloned biosensors and performed widefield multiplexing experiments and analysis thereof; M.S.F. and S.A.S. generated stable cell lines, assisted with 2P and lattice light-sheet microscopy and performed the analysis of the former, and performed islets experiments by scanning confocal microscopy. L.L. assisted with the Sort-Seq screen and performed FACS; F.S. assisted with STED microscopy. Z.W. processed and analyzed lattice light-sheet data. H.H. performed lattice light-sheet microscopy. Y.L. performed 2P microscopy. A.C.L. generated MATLAB scripts for object identification and pairing in STED images. T.V.R. isolated mouse islets. M.S.F., J.M.O., L.S., J.S., S.E.F., S.M., Y.W. and J.Z. supervised the work. M.S.F., S.M. and J.Z. wrote the paper with input from all authors.

Corresponding authors

Correspondence to
Michelle S. Frei or Jin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Brightness measurements.

a,b, Basal (a) and activated brightness (b) of HaloAKAR-JF635 biosensors. In b, the brightness of HaloTag7-JF635 is given for comparison. Individual data points are shown from three independent repeats along with mean and 95% confidence intervals. Numbers of cells (n) can be found in Supplementary Table 6. Note that experiment a and b were measured using different microscopy settings given in the methods section.

Source data

Extended Data Fig. 2 Subcellularly targeted HaloAKAR biosensors.

a,b, Plasma membrane targeting via fusion to the CAAX sequence of KRAS (a) or Lyn11 (b). c, Outer mitochondrial membrane targeting by fusing to Tomm20. d, Actin targeting via fusion with β-actin. e, Microtubule targeting via microtubule binding protein CEP41. f, Clathrin targeting via fusion with clathrin light chain. Average time courses of HeLa cells expressing targeted HaloAKAR2.0, HaloAKAR2.1, or HaloAKAR2.2 labeled with JF635-CA and stimulated with 50 μM Fsk and 100 μM IBMX (Fsk/IBMX) are shown along with representative images after stimulation. Time courses and images are representative of three replicates. Thick and thin solid lines indicate mean and single-cell responses, respectively; shaded areas correspond to standard deviation (a: n = 8, 8, 7 cells; b: n = 7, 6, 4 cells; c: n = 7, 7, 5 cells; d: n = 5, 7, 4 cells; e: n = 6, 4, 5 cells; f: n = 5, 8, 6 cells). Scale bars, 20 µm.

Source data

Extended Data Fig. 3 Characterization of the HaloAKAR series in HEK293T cells in 2D and 3D culture.

a, Characterization of HEK293T cells stably expressing cytosolic HaloAKAR2.1 (HaloAKAR2.1-NES) and plasma membrane EGFP (EGFP-CAAX) labeled with JF635-CA in 2D culture. A representative image overlay (EGFP: green, HaloAKAR: magenta) after Fsk/IBMX stimulation is given. b,c, HEK293T cells expressing cytosolic HaloAKAR2.0-NES, HaloAKAR2.1-NES, or HaloAKAR2.2-NES and plasma membrane EGFP (EGFP-CAAX) labeled with JF635-CA in 2D culture. The dynamic range (ΔF/F0) after Fsk/IBMX stimulation (b, n = 70, 75, 88 cells from three replicates) and time courses after stimulation with Fsk/IBMX (c, n = 29, 25, 29 cells). The dynamic range in HEK293T cells are ΔF/F0 = 0.85 ± 0.04, 6.46 ± 0.24, and 11.21 ± 0.92. d, Time course-measurements of HEK293T cells stably expressing HaloAKAR2.1-NES and EGFP-CAAX labeled with JF635-CA in 2D culture stimulated with 1 µM isoproterenol (iso) followed by Fsk/IBMX (n = 28 cells). e-h, Characterization of the same cell line in 3D spheroid culture. 4-d-old spheroids were labeled with JF635-CA and imaged by spinning-disc confocal microscopy, acquiring images of the entire spheroid (e and f) or a single plane (g and h). Representative overlay images of a single plane (e and g) and the corresponding time course quantification (f: n = 27 cells, h: n = 20 cells) is given. Measuring z-stacks over the entire spheroid height led to some bleaching, in contrast to the single-plane measurements (g and h). Time courses and images are representative of three replicates. Thick solid lines indicate mean response; shaded areas and error bars correspond to 95% confidence interval; single-cell traces are shown if n < 10 (c). Scale bars, 20 μm.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Tables 1–9, Video 1, methods and references.

Reporting Summary

Supplementary Video 1

PKA activity in isolated mouse islets upon acute glucose stimulation. Video of isolated mouse islets expressing HaloAKAR2.2-T2A-EGFP labeled with JF635-CA responding to actuate stimulation with glucose (25 mM) at 2 min. Intensity increases corresponding to increased PKA activity can be seen at 5 min (3 min after addition). Scale bar, 50 μm.

Supplementary Data 1

Statistical source data.

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frei, M.S., Sanchez, S.A., He, X. et al. Far-red chemigenetic kinase biosensors enable multiplexed and super-resolved imaging of signaling networks.
Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02642-8

Read More

0 Votes: 0 Upvotes, 0 Downvotes (0 Points)

Leave a reply

Recent Comments

No comments to show.

Stay Informed With the Latest & Most Important News

I consent to receive newsletter via email. For further information, please review our Privacy Policy

Advertisement

Loading Next Post...
Follow
Sign In/Sign Up Sidebar Search Trending 0 Cart
Popular Now
Loading

Signing-in 3 seconds...

Signing-up 3 seconds...

Cart
Cart updating

ShopYour cart is currently is empty. You could visit our shop and start shopping.